Applied Systems Biology Publications

The complete list of publications can be found at Google Scholar
Here you have some selected publications

Modeling microbial systems at multiple scales
  • Moimenta A, Troitiño-Jordedo D, Henriques D, Contreras-Ruíz A, Minebois R, Morar M, Barrio E, Querol A, Balsa-Canto E. An integrated multiphase dynamic genome-scale model explain batch fermentations led by species of the Saccharomyces genus. mSystems (2025) e0161524. doi: 10.1128/msystems.01615-24.
  • Scott, W. T., Henriques, D., Smid, E. J., Notebaart, R. A., & Balsa-Canto, E.  Dynamic genome-scale modeling of Saccharomyces cerevisiae unravels mechanisms for ester formation during alcoholic fermentation. (2023) Biotechnology and Bioengineering, 115. https://doi.org/10.1002/bit.28421
  • Moimenta A.R, Henriques D, Minebois R, Querol A, Balsa-Canto E. Modelling the physiological status of yeast during wine fermentation enables the prediction of secondary metabolism. (2023) Microbial Biotechnology, 00, 115. https://doi.org/10.1111/1751-7915.14211
  • Henriques, D., Balsa-Canto, E. The Monod Model is insufficient to explain biomass growth in nitrogen-limited yeast fermentation (2021) App& Environ Microbiol, 87 (20), 1-22. https://journals.asm.org/doi/10.1128/AEM.01084-21
  • Henriques, D., Minebois, R., Mendoza, S.N., Macías, L.G., Pérez-Torrado, R., Barrio, E., Teusink, B., Querol, A., Balsa-Canto, E. A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the Saccharomyces genus in fermentation (2021) mSystems, 6 (4), art. no. e00260-21. https://doi.org/10.1128/mSystems.00260-21
  • Balsa-Canto, E., López-Núñez, A., Vázquez, C. A two-dimensional multi-species model for different Listeria monocytogenes biofilm structures and its numerical simulation (2020) App Math & Comput, 384, art. no. 125383. https://doi.org/10.1016/j.amc.2020.125383
  • Henriques, D., Alonso-del-Real, J., Querol, A., Balsa-Canto, E. Saccharomyces cerevisiae and S. kudriavzevii synthetic wine fermentation performance dissected by predictive modeling (2018) Front Microbiol, 9, art. no. 88. https://doi.org/10.3389/fmicb.2018.00088
  • Balsa-Canto, E., Vilas, C., López-Núñez, A., Mosquera-Fernández, M., Briandet, R., Cabo, M.L., Vázquez, C. Modeling reveals the role of aging and glucose uptake impairment in L1A1 Listeria monocytogenes biofilm life cycle 2017) Front Microbiol, 8, art. no. 2118. https://doi.org/10.3389/fmicb.2017.02118
  • de Hijas-Liste, G.M., Klipp, E., Balsa-Canto, E., Banga, J.R. Global dynamic optimization approach to predict activation in metabolic pathways (2014) BMC Syst Biol, 8(1), art. no. 1. https://doi.org/10.1186/1752-0509-8-1
Modeling interactions in biological systems
  • Balsa-Canto, E., Alonso-del-Real, J., Querol, A. Temperature Shapes Ecological Dynamics in Mixed Culture Fermentations Driven by Two Species of the Saccharomyces Genus (2020) Front Bioeng & Biotechnol, 8, art. no. 915. https://doi.org/10.3389/fbioe.2020.00915
  • Balsa-Canto, E., Alonso-Del-Real, J., Querol, A. Mixed growth curve data do not suffice to fully characterize the dynamics of mixed cultures (2020) PNAS, 117 (2), pp. 811-813. https://doi.org/10.1073/pnas.1916774117
Mathematical methods and software tools
  • Menolascina, F., Bandiera, L., Gomez-Cabeza, D., Gilman, J., Balsa-Canto, E. Optimally designed model selection for synthetic biology (2020) ACS Synth Biol, 9 (11), pp. 3134-3144. https://doi.org/10.1021/acssynbio.0c00393
  • Bandiera, L., Hou, Z., Kothamachu, V.B., Balsa-Canto, Ehttps://doi.org/10.1093/bioinformatics/btx735., Swain, P.S., Menolascina, F. On-line optimal input design increases the efficiency and accuracy of the modelling of an inducible synthetic promoter (2018) Processes, 6 (9), art. no. 148. https://doi.org/10.3390/pr6090148
  • Tsiantis, N., Balsa-Canto, E., Banga, J.R. Optimality and identification of dynamic models in systems biology: An inverse optimal control framework (2018) Bioinformatics, 34 (14), pp. 2433-2440. https://doi.org/10.1093/bioinformatics/bty139
  • Ligon, T.S., Fröhlich, F., Chiş, O.T., Banga, J.R., Balsa-Canto, E., Hasenauer, J. GenSSI 2.0: Multi-experiment structural identifiability analysis of SBML models (2018) Bioinformatics, 34 (8), pp. 1421-1423. https://doi.org/10.1093/bioinformatics/btx735
  • Balsa-Canto, E., López-Núñez, A., Vázquez, C. Numerical methods for a nonlinear reaction–diffusion system modelling a batch culture of biofilm (2017) App Math Mod, 41, 164-179. https://doi.org/10.1016/j.apm.2016.08.020
  • Chis, O.-T., Villaverde, A.F., Banga, J.R., Balsa-Canto, E. On the relationship between sloppiness and identifiability(2016) Math Biosci, 282, pp. 147-161. https://doi.org/10.1016/j.mbs.2016.10.009
  • Balsa-Canto, E., Henriques, D., Gábor, A., Banga, J.R. AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology (2016) Bioinformatics, 32 (21), pp. 3357-3359. https://doi.org/10.1093/bioinformatics/btw411
Applications in monitoring, design, optimisation and control
  • Vilas, C., Arias-Méndez, A., García, M.R., Alonso, A.A., Balsa-Canto, E. Toward predictive food process models: A protocol for parameter estimation (2018) Crit Rev Food Sci & Nut, 58 (3), pp. 436-449. https://doi.org/10.1080/10408398.2016.1186591
  • García, M.R., Cabo, M.L., Herrera, J.R., Ramilo-Fernández, G., Alonso, A.A., Balsa-Canto, E. Smart sensor to predict retail fresh fish quality under ice storage (2017) J Food Eng, 197, pp. 87-97. https://doi.org/10.1016/j.jfoodeng.2016.11.006
  • Villaverde, A.F., Bongard, S., Mauch, K., Balsa-Canto, E., Banga, J.R. Metabolic engineering with multi-objective optimization of kinetic models.(2016) J Biotechnol, 222, pp. 1-8. https://doi.org/10.1016/j.jbiotec.2016.01.005
  • Arias-Mendez, A., Vilas, C., Alonso, A.A., Balsa-Canto, E. Time-temperature integrators as predictive temperature sensors (2014) Food Control, 44, pp. 258-266. https://doi.org/10.1016/j.foodcont.2014.04.001
Privacy Overview
Logo Bio2Eng

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.